Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

نویسندگان

  • Andrei Vovk
  • Chad Gu
  • Michael G Opferman
  • Larisa E Kapinos
  • Roderick Yh Lim
  • Rob D Coalson
  • David Jasnow
  • Anton Zilman
چکیده

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecul...

متن کامل

Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.

Nuclear transport proceeds through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope of eukaryotic cells. The Saccharomyces cerevisiae NPC is comprised of 30 nucleoporins (Nups), 13 of which contain phenylalanine-glycine repeats (FG Nups) that bind karyopherins and facilitate the transport of karyopherin-cargo complexes. Here, we characterize the structural properties of S...

متن کامل

Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex.

Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe-Gly nucleoporins (FG Nups) that contain multiple phenylalanine-glycine repeats are of particular int...

متن کامل

The Multiple Faces of Disordered Nucleoporins.

An evolutionary advantage of intrinsically disordered proteins (IDPs) is their ability to bind a variety of folded proteins-a paradigm that is central to the nucleocytoplasmic transport mechanism, in which nuclear transport receptors mediate the translocation of various cargo through the nuclear pore complex by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). FG-Nups are hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016